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THE BOX METHOD FOR LINEAR PROGRAMMING:

PART II - TREATMENT OF PROBLEMS IN STANDARD
FORM WITH EXPLICITLY BOUNDED VARIABLES e

by Karel ZIKAN and Richard W. COTTLE ¢

1. Introduction.

The Box Method is a new interior-point algorithm for linear programming that deals with ;
linear programs whose constraints are all linear inequalities. [See Zikan and Cottle (1987, ;
Algorithm I) .] Hence, from the standpoint of (primal) problems presented in what Dantzig
(1963, p. 86) calls “standard form” (i.e., equality constraints, nonnegative variables), the
Box Method operates on the dual problem; in this sense it is a dual method.

Since linear programming problems with explicit upper (and lower) bound constraints
are very common, a practical linear programming algorithm must be able to treat them as
easily as the Simplex Method does. This report aims to accomplish for the Box Method 2
what Dantzig (1955) did for the Simplex Method: to produce an efficient variant of the
algorithm for handling problems with (explicit) upper bounds on the variables. The ex-
plicitly bounded variables are assumed to occur in a primal problem having standard form,
although the algorithm will solve its dual. Like the Simplex Method, the variant presented 5
here solves the problem almost as efficiently as if the upper bounds were not present. The
increases in problem size and computational effort are very small.

Specifically, it will be shown in this paper how a crucial aspect of the Box Method by
can take advantage of the special structure of the dual of a linear program in standard
form with explicit upper bounds on the variables. The key step in the Box Method is
the determination of a minimum-weight basis corresponding to an interior feasible iterate.

-

= o -

(This is also called the combinatorial or matroidal problem.) Minimum-weight bases arc %
used in constructing the “boxes” over which the algorithm’s direction-finding subproblems
are solved. Since the other algorithmic effects are insignificant, only matters related to the O
minimum-weight basis will be discussed. An important consequence of the results presented <=7}
here is that any efficient scheme pertaining to (primal) problems without explicit upper
bounds on the variables can be extended to the bounded-variable case. This point will be
illustrated in the sequel to this report where the Box Method will be specialized to the
important class of (linear) minimum cost flow problems.

3=

.-'r--..—

-

]

1 84 N . ; .
S \.‘.i...i AN "h'.i. h..'i.‘ RO SROAUGTAS RSN .’., N 24



2. Block formulation.
Consider the linear program

minimize by (1.1)
subject to Ay =c (1.2)
0<y<u (1.3)

where A”is an n xm matrix with linearly independent rows. Accordingly, rank AT=n < m.
After slack variables are inserted in (1), the constraint matrix becomes

AT o

4T

#-(51):

the objective function vector and right-hand side vector become, respectively,
B'= (7,0 and &= ( ; )

It is immediate that AT is an (n + m) x 2m matrix of full rank. The purpose of an upper-
bounding technique is to avoid using such a potentially large matrix and to work instead
with AT itself.

Now assume that the columns of the matrix AT are “weighted” as in the Bax Method.!
This means that to each column of AT is associated a positive real number, its weight.
How the weights are assigned is not important at the moment. Given the weight vector,
w, the first problem is to find a minimum-weight basis consisting of columns of the matrix
AT and then an appropriate factorization. A minimum-weight basis is a maximal set of
linearly independent columns for which the sum of the corresponding weights is minimum.
It will be shown that solving this matroidal problem M P( AT, w) can be accomplished with
very little effort beyond what is needed to do the analogous job for AT. Furthermore, the
structure of a minimum-weight basis facilitates solving the two equations for which the Box
Method requires solutions.

3. Theory.

The propositions and corollaries of this section provide the theoretical underpinnings of the
algorithmic developments that follow. The results proceed from the natural (and obvious)
pairing between the columns of the (n 4+ m) x 2m matrix AT, namely column ¢ corresponds
to column m 4 i. Therefore, let

i—i'=m+i i=1,...,m. (2)

1The Bax Method, as stated, would deal with A (rather than AT) and hence the rows would be weighted.




The first result is for matrices of more general type than A™.

Proposition 1. Let M be a k x £ matrix having no column of zeros. Assume B and D are
k x k invertible and £ x ¢ invertible diagonal matrices, respectively. Given a fixed £-vector
of weights, w, the matroidal problems associated with the matrices M and M = BMD are
solved by the same set of indices.

Proof. The matrices M and BM D have exactly the same sets of linearly independent
columns. That is, if E denotes a nonempty index set drawn from {1,...,¢}, then M. g has
linearly independent columns if and only if M, g has linearly independent columns. Since
the two matroidal problems are defined in terms of the same weight vector, w, it follows
that the greedy algorithm will make the same column choices in each problem, thereby
producing the same index set as solution. B

Corollary 1. Assume that the matrix AT and the vector of weights, w, are fixed. Then the
same set of basic indices solves the matroidal problem for every matrix having the block

form AT o

( B BD ) 3)
where B is any m x m invertible matrix and D is an invertible diagonal matrix of the same
order.

Proof. In view of Proposition 1, it suffices to note that a matrix of the form (3) can be
brought to the “canonical form” (2) through multiplication on the left by

( . B ) )

(5 on)- (5)

In the case of (4), the identity matrix is of order n whereas in (3) it is of order m. @

and on the right by

Remark. Assumption (A3) of the Box Method ordinarily calls for some (row) scaling in
the A. Accordingly, one is required to solve matroidal problems in which the matrices have
the block form

T
(‘DD ?): ©)

but such matrices are easily reduced to the form (2).
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Corollary 2. Assume the matrix AT and the vector of weights, w, are fixed. Then the
same set of basic indices solves all matroidal problems for matrices of the form

AT 0
(2 ) U
where D, and D; are nonsingular diagonal matrices of order m.

Proof. Obvious. B

Remark. A special case of Corollary 2 is that in which D, and D, are (possibly distinct)
“signed identity matrices” (i.e., their diagonal elements are +1.)

Tie-breaking assumption. In order to avoid clumsiness in the wording of the following
results, it will be assumed that ties are broken according to an arbitrary—but fixed—rule.
This being settled, no special consideration need be given to ties.

Proposition 3. From each pair of indices (i,1’), at least one index, namely the one with
the smaller associated weight, must be selected when the greedy algorithm is applied to
the matroidal problem associated with AT.

Proof. Given the special structure of the matrix, the column i’ can not be linearly depen-
dent on previously selected columns unless its “mate”, ¢, has already been selected. The
same holds for column i. Since the greedy algorithm considers the columns according to
increasing order of their weights, the assertion readily follows. B

Proposition 3. All bases, i.e., maximal linearly independent sets of columns, in the matrix
AT contain exactly n (i,i') pairs and m — n single elements from the remaining (i, ') pairs.

Proof. The rank of AT is n + m, hence this is number of columns in any maximal linearly
independent set. Let E denote the set of indices of such a set of columns. There are m pairs
of indices (i,1'), and E must contain at least one representative of each pair. (Otherwise,
the corresponding matrix would contain a row of zeros and hence would not consist of
linearly independent columns.) Assume these m indices have been identified. No matter
how the other n indices are chosen, their mates will necessarily belong to E. After this
pairing is established, the there must remain m — n among the original m elements for
which E contains no mate; these are the single elements. B

The idea is illustrated by the matrix

AT AT 0 0
( (Dih 0 (D O )

0 (Dv)a 0 (D3)
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in which A] denotes a nonsingular n x n matrix; for i = 1,2, (D;), and (D;), denote
nonsingular diagonal matrices of orders n and m — n, respectively. In the present case,
the pairs of indices would be (1,1),...,(n,n’); this corresponds to the fact using AT to
cover the first n rows makes it necessary for (D;); to cover the next n rows. The remaining
rows must be covered by columns drawn in a “complementary” way—that is, exactly one
of 1,i'—from the matrices (D,); and (D;);.

Definition. Given w € R*™, let ¥ € R>™ be defined by the relations
; = max {w;, Wmsi},  Bmei = min {w;, wmei}. (8)

The following result pertains to the selection of a basis in accordance with the associated
matroidal problem.

Proposition 4. For a fixed matrix AT the solution E(w) of the matroidal problem
M P(AT,w) associated with the weight-vector w and the solution E(w) of the matroidal
problem M P(AT, %) associated with with weight-vector ¥ contain the same set of pairs of
indices.

Proof. Consider the problem M P(AT,w) associated with the matrix AT. Assume w # 1,
for otherwise there is nothing to prove. Define the set

U={ie{l,...,m}: ;> w}.
Let ¢ € U be arbitrary, and perform the following sequence of operations:

1. Multiply AT on the left by the elementary matrix that corresponds to a Gauss-Jordan
pivot on the element in row n + i and column i, that is, AT, .. (Cf. Proposition 1:
left multiplication by nonsingular B.)

2. Change the sign of column i’ = m +i. (Cf. Proposition 1: right multiplication by a
nonsingular diagonal matrix.)

3. Interchange columns ¢ and ¢’ and also interchange the corresponding pair of weights.
(Otherwise, the matroidal problems are not the same. Note that a—nondiagonal—
permutation matrix is being applied on the right!)

4. Bring the matrix (which has the form (7) with signed identity matrices) to the form
(2). (Cf. Corollary 2.)

Now the structure of the matrix is the same as in the beginning except for the roles of
the indices i and i’ which have been interchanged. Repeat the same procedure for alli € U.
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When the process is complete, the original matroidal problem M P(AT,w) will have been
transformed into the canonical format of the matroidal problem M P(AT, ). The difference
is that for each ¢ € U, the column in the i position now bears the name i’ and vice versa.
Therefore, for each s € U, i € E(w) if and only if i’ € E(%), and ¢’ € E(w) if and only if
t € E(w). Likewise, for each i ¢ U, ¢ € E(w) if and only if i € E(t%), and ¢ € E(w) if and
only if # € E(w). Thus, E(w) and E(1) contain the same index pairs. B

Corollary 3. To salve the matroidal problem M P(AT,w), it suffices to solve M P(A”, %)
where w denotes the first m components of the vector w.

Proof. Obvious. B

Example. Suppose

AT=(? g 2) and w = (5,8,6,9,4,7),

so that m = 3 and n = 2. Thus,
w=(9,8,7,5,4,6) and U = {1, 3}.

To solve the matroidal problem M P(AT, w) one must select 5 linearly independent columns
from the matrix AT for which the sum of the corresponding weights is as small as possible.
The data can be arranged in tabular form as follows:

[
-
(2]

! «— Indices
+—— Weight vector w

— AT

O O = = CrCRl =
O O N oo
-0 O woe
ocoo=o oo
OO0 ORN
-0 00 o=

The transformation process described in Proposition 4 ends with the table

1 2 3 1 2 3 «— Indices
9 8 7 5 4 6| Weight vector @
5 23 0 0O
1 2 4 0 0 O
1 0010 0|— AT
010010
0 01 0 O0 1
6

A N N AN



The solution to MP(AT,w) is
E(w) = {2,%,1,2,3)}.

By contrast, the matroidal problem M P(A7, ) is expressed by the table

1 231 2 3 «— Indices

9 8 7 5 4 6]« Weight vector v
5 23 000

124000

1001 0 0|— AT
01001 0

0010 0 1

which only differs from the preceding table in the locations of the primes on the indices
(i.e., the columns labels). The solution of M P(AT, ) is obviously

E(w) = {2,3,1,2,8).

Proposition 2 asserts that for every i = 1,...,m, the index of the smaller weight w;, w;
belongs to E(w). The definition of % implies that i’ € E(1) for every i, and then focuses
attention on solving M P(AT, %) where w; = w; fori =1,...,m.

4. Algorithm.

As seen above, the solution set E(w) contains n pairs of indices (,i') and m — n other
elements, one from each remaining (i, ') pair, namely the one corresponding to the smaller
weight. Accordingly, the set E(w) has a natural partitioning into the disjoint union of four
subsets: D, D', S, and S’. The following relationships hold.

i) D and S are subsets of {1,...,m};
ii) D’ and S’ are subsets of {1',...,m’};
iii) ¢+ € D if and only if ¢’ € D’;
iv) D and D’ each contain n elements;

v) S and S’ may each be empty, but their union contains exactly m — n elements.



procedure upper bounds min-weight basis
begin —
S+ 0; (comment: S is the set of single i’s selected)
S'—0; (comment: §' is the set of single i"’s selected)
D« ®; (comment: D is the set of i’s selected for pairs) E
D'« 90; (comment: D’ is the set of i"’s selected for pairs) :
fori=1,m do
begin »
if (w; < wy) then !
t?),‘ — Wy
S« Su({s}
else
W; — w;
S — S'u {i'}
endif
end
(comment: This completes the selection of indices according to Proposition 2.)
begin
solve MP(AT, %) to get D and D’; (comment: Corollary 3.)
S+~ S\D
S'—S\D
return S,S5’, D, and D/
end

Y
'
.
h
'
¢

end

Thus, as a result of solving M P(AT,w), one obtains the index set E(w) and its parti-
tioning:

E(wy=DuD'uSuUS.

Indeed, as will be seen in the next section, it is useful to partition the full sets of indices
as follows:

{1,....m}=DUSUN and {V,...,m})=D'US'UN". N

The elements of N and N’ are, of course, the indices of nonbasic columns of AT. There is
a pairing between the elements of S and those of N’. Likewise, there is a pairing between
the elements of S’ and those of N.
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In the example used in Section 3, these six sets are

D ={2,3}, D'={2,3},
S = {1}, S'=40,
N=4, N'={1}.

5. Solving systems of equations.

Each iteration of the Box Method entails the solution of a box problem, each of which,
in turn, calls for the solution of two systems of equations stated in terms of the current
minimum-weight basis. [See (12) and (13) in Zikan and Cottle (1987).] This section will
discuss how to treat these systems when the original primal problem is of the bounded
variable type.

In general, let BT denote the minimum-weight basis (A").g(v). The first system of
eauations to be solved is of the form

B% =¢, (9)

a=(:).

The second system of equations to be solved is of the form

where

Bz=:% (10)

where Z is the solution to a simplified box problem [see (14) in Zikan and Cottle (1987))
that is defined in terms of é. The solution z of (10) above is the solution to the box problem
corresponding to the current minimum-weight basis.

Up to a rearrangement of rows and columns, the matrix AT can be written in the form

A%p ATs Ay 0 0 O
Ip 0 0 Ipp 0 O
0 Is 0 0 In O
0 0 I N 0 0 I s

After further rearrangement, it follows that

o CESEEE
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AT, 0 ATs 0

~ Ip Ip 0 0
T D D

B = 0 0 Ig 0

0 0 0 Ig

Note that the submatrix AT, of BT is the minimum-weight basis matrix that would
have been obtained if there had not been any explicit upper bounds. From the (essentially
block triangular) structure of B, it is evident that solving systems of equations like those
indicated in (9) and (10) requires little more work or storage than than solving equations
(12) and (13) in Zikan and Cottle (1987).

To see this more clearly, consider a system of the form (9). In more detail the system
can be written as

ATp 0 ATs O ¢p )
Ip Ip 0 0 cp _| ¢p
0o o0 I o [|la& [T & | (1)
0 0 0 I Csr Cs’

Solving (11) can be done by sequentially solving the following set of four smaller systems:

Is:és: = ¢Cs; (12)
Isés = ¢&s; (13)
AT.pép = &p— Al.sés; (14)
Ipép = ép — Ipép. (15)
In block form, (10) becomes
AD. ID 0 0 2p ED
0 ID' 0 0 Zp’ _ EDI .
As. 0 Is o || 2s || 2 | (16)
0 0 0 IS' zZg 251

the technique for solving it is analogous to that for (11), and will not be spelled out.

Remark. Due to the possible need for scaling, it may happen that some of the blocks
identified here as identity matrices are actually nonsingular diagonal matrices. It is clear
that if these conditions obtain, there is very little extra storage or computational cffort

required. The only significant work stems from equation (14).

10
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The procedure presented here can be modified to handle the case where some, but not '
all of the variables are explicitly upper bounded. The details are easily worked out and
hence are omitted.
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direction at the current iteration. Finding a minimum-weight basis is 2 matroidal (or, combinatorial) ;
optimization problem that can be handled by a greedy algorithm. This paper suggests a way of efficiently ™
solving the minimum-weight basis problem in cases where the (primal, standard form) linear program :
contains explicitly bounded variables. It is shown that the main part of the task requires almost no more .
computational effort or storage space than does a problem of the same size without upper bounded R

variables. While this result is believed to be valuable in its own right, there is additional benefit to
be gained in applications where the finding of a minimum-weight basis (for a linear program without
explicit upper bounds on its variables) is done by a special greedy algorithm. Such is the case with ;
minimum-cost network flow problems which will be discussed in Part Ill of this series. '
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